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Background of Project

 MDT routinely uses woven and non-woven
geotextiles in paved roads for stabilization
and separation
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Stabilization (Construction Expedient)

1) Softer subgrade
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Separation
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Objective of Project

* Once the road is constructed, do these
same geotextiles offer structural benefit to
the operational paved road?

* Do they allow a greater amount of traffic to
be applied with all other variables being
equal?
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Project Approach

» Construct indoor test sections matching
typical MT rural hlghway condltlons and
traffic |

TRI

Accelerated |

Pavement
Tester
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History

 Research idea, late 2015
* Draft proposal early 2016

* Proposal put on-hold due to insufficient
funding

* New proposal late 2017
* Project start date: February 2018
 First loading June 2019

» Reconstruction and second loading October
2019, completed January 2020.
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Tasks

« Task 1: Literature review (completed 7/31/2018)

« Task 2: Test section planning and design
(completed 1/30/2019)

« Task 3: Test section construction and trafficking
(completed 1/15/2020)

« Task 4: Analysis and synthesis of results
* Task 5: Reporting
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Task 1: Literature Review

» Organization
— Updated review of test section projects

— Summary of variables impacting observed
benefit

— Review of design methods

— Assessment of suitability of spreadsheet
model
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Task 1: Literature Review

* Findings
— Previously established trends of decreasing
benefit with increasing subgrade strength and

increasing pavement structural number still
hold

— CBR > 8, no benefit
— SN > 4, no benefit

— Placement position: important but still
Inconclusive
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Task 1: Spreadsheet Model
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Task 2: Test Section Planning and
Design — Test Facility
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Task 2: Materials

- HMA
— Extensive testing work to match MDT materials
Property Surface C
PG Grade G4-22
Asphalt content (%) 5.55
Rice specific gravity (G 245
Bulk specific gravity (Ggg) 2.34
Auar void content (%) 435
WVhIA 16.9
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Task 2: Materials

 Base Aggregate
— Brewer Pit, Forsyth, MT: SP, A-1-a

Property
Specific gravity of fine mat’ls 2.653
Specific gravity of course mat’ls 2.631
Fractured face content (1+) 65%
% passing #200 sieve 4.6%
Maximum dry unit weight# 136.9 pcf
Optimum moisture content* 7.7%
0 o
CBR @.95 /0_ Modified Proctor 100%
dry unit weight
R-value at 2.07 MPa (300 psi) 795
exudation pressure '
L.A. Abrasion loss 18%
Micro-Deval loss 5.5%

1 determined using Modified Proctor method (ASTM D1557)
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Task 2: Materials

* Subgrade
— Manufactured clay, CL, A-6

Property

Liquid Limit 40%
Plastic Limit 25%
Plasticity Index 15%

% passing #200 sieve 75.5%
Maximum dry unit weight' 102 Ib/ft3
Optimum moisture content? 18.6%
Maximum dry unit weight* 112 Ib/ft3
Optimum moisture content* 17.0%

R-value at 2.07 MPa (300

psi) exudation pressure

 determined using Standard Proctor method (ASTM D698)
 determined using Modified Proctor method (ASTM D1557)

- College of
%\%%rvég% ENGINEERING Western Transportation Institute

23.5




Task 3: Test Section Construction and
Trafficking

3 Propex Geotex 801 ‘ TenCate RS280i \ Control 13.25"

Test Sections: Predicted response:
 Control (no geosynthetic) 320k cycles to failure
* TenCate RS280i — woven textile 900k cycles to failure

* Propex Geotex 801 — non-woven textile 450k cycles to failure
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Construction QC Testing Plan

Elevation and thickness — surveys

* |n-situ shear strength (subgrade) — vane shear
* |n-situ moisture content — oven

* Dynamic stiffness — LWD

« Strength — CBR and/or DCP
* Density — sand cone and/or nuclear density
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Construction Surveys
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Measurements in Each Test Section

Subgrade
Measurement Type Layer Measurements
per Layer
In-situ shear strength (vane) All 24
Moisture content All 12
Bearing strength (CBR) All 2
Dynamic stiffness (LWD) 4,5,6 6
Strength (DCP) Final 6
Unit weight (sand cone) Final 4
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Subgrade Measurements

@\, o %\9 Subgrade
v
Y G
% S,
R4 %, &
% % %
So © o
\ .
\I __
2 x -1 x 1
A A S 2t
3 4

6)( 2 )(5
Measurement Type < > A k ]

Vane Shear — all layers 1

X X
Moisture Content — all layers C A @Aﬁ 2ft

O%* O > x

Lightweight Deflectometer — final 3 layers % ! % L
Dynamic Cone Penetrometer —final layer only 14y, | x 13

d . fi [ | D 7A A8 2 ft.
Sand Cone Density —final layer only 21t. 15 16 21t.

| 4% ft. \ 2ft. \ 4% ft. \

MONT AN A College of

STATE UNIVERSITY | ENGINEERING Western Transportation Institute




Measurements in Each Test Section

Base Course

Measurement Type Layer Me;:::‘:‘?e(el‘nts
Moisture content All 3
Dynamic stiffness (LWD) All 6
Strength (DCP) Final 6
Unit weight (sand cone) Final 2
Unit weight (nuclear densometer) Final 2-4
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Base Course Meqsurpments

Measurement Type

Moisture Content — all layers

Lightweight Deflectometer — all layers

Dynamic Cone Penetrometer — final layer only

Nuclear Densometer — final layer only

Sand Cone Density —final layer only
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Asphalt Measurements
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Subgrade Construction

* Mix subgrade to target moisture content

« Compact small area using jumping jack

« Test vane shear strength, and adjust if necessary
* Install in pit

* Track in place with skid-steer

« Compact with drum compactor

« Conduct in-situ material testing

« Cover to minimize changes over time
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Mixing Subgrade
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Subgrade Prior to Compaction
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Leveling Final Subgrade Surface
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Final Subgrade Surface
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Instrumentation Layout

* 6 sensors per test section
* 3 base course o
3 subgrade

2ft.
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I 1%t 7 2ft ] 1%t 7l

Measurement Type
@ \Vertical displacement of subgrade surface

@ Vertical displacement of base course surface

M MONTANA | Coteseof

STATE UNIVERSITY | ENGINEERING Western Transportation Institute




Installing LVDT Anchor
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Installing LVD'T
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Installlng Geosynthetlcs
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Base Course Construction

| Procedure:

* Mix to OMC

* Two layers ~

6 in. thick

« Screed level
« Compact
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Installing Base
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Compaction
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Final Surface

Density taken on
surface met
specification of 1st
construction
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Asphalt Paving

e Single lift
 Target thickness = 3.0 in.
* +/- 0.15 in. tolerance
/ « Target density = 92%
=/ « Nuclear density testing
18 meas./test section

o
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_ Final Surface
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Accelerated Trafficking
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* ~10 passes per min.

« 9,000 Ib.

« Dual wheel assembly

* 90 psi tire pressure
 Localized climate control
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Surface Rut Measurements

Measurements in each test section:
.= | « 34 measurements of longitudinal rut
(17 per tire track)
o . « 2 transverse profiles
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Longitudinal Rut Response
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Why Large Strains in Base Course?

« Base compacted at optimum moisture content

* Was not part of QC plan to measure density of
first layer

* First layer was too wet and did not get
compacted properly

* Reluctance to distort subgrade surface with
compaction equipment
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Reconstruction

 Remove asphalt

 Remove base course

 Remove instrumentation

 Remove geosynthetics

* Re-level subgrade surface (removed ~1 in.)
* Rebuild base and asphalt layers
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Subgrade Moisture Content

« /2 measurements per test section

* Average values
— Test Section 1 =27.7%
— Test Section 2 = 27.7%
— Test Section 3 =27.7%

» Range of layer averages: 25.8 — 28.7 %
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Subgrade Vane Shear

* 144 measurements per test section

* Average values
— Test Section 1 = 107.4 kPa
— Test Section 2 = 104.3 kPa
— Test Section 3 = 105.1 kPa
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Subgrade Dynamic Cone Penetrometer

CBR (%)

* Avg. per test

section

— Sect. 1 =2.27
— Sect. 2 =2.27
— Sect. 3=2.24

12

Depth (in.)

24

30

36
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Base Dry Unit Weight

Average Unit Weight (Ib/ft3) and Percent Compaction
Test Section 1 Test Section 2 Test Section 3
3 (nuclear) 137.5 (100.6%) 136.9 (100.1%) 137.7 (100.7%)

3 (sand cone) 137.7 (100.7%) 138.7 (101.5%) 137.5(100.6%)

2 137.7 (100.7%) 137.9 (100.9%) 136.5 (99.9%)
1 136.0 (99.5%) 135.5 (99.1%) 137.4 (100.5%)

f Layer 1 is the bottom base layer, and Layer 3 is the top layer.

Layer'
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Base Dynamic Stiffness (LWL

N

Average Dynamic Stiffness (MN/m?2)

Layer' _ _ _
Test Section 1 Test Section 2 Test Section 3

3 123.63 115.54 122.42

2 24.25 19.63 23.77

1 19.40 15.98 17.85

f Layer 1 is the bottom base layer, and Layer 3 is the top layer.
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Base Construction Comparisons

Parameter Phase | Phase Il
Thickness (in.) 13.4 13.3
Moisture content by layer* (%) 7.9/5.5 6.5/6.6/6.0
Dyn. Stiffness by layer* (MN/m?) 5.8/23.1 17.7122.6/120.5
CBR from DCP (%) 17.7 73.4
Density by layer* (pcf) 138.8 (final layer only)  136.3/137.4/138.0

*Earlier numbers are associated with lower layers

Max. dry unit weight = 136.9 pcf
OMC =7.7%
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Avg Strain in Base 15t
Construction

5.0
45 —— ==@=Control
~8—RS280i //‘
I r »
4.0 1 Geotex 801

w
n

w
=)

Strain (%)
N
wv

N
o

=
wn

=
o

o
n

o
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Traffic Passes

A DI’ College of
ET%?EI}JI;II‘VEI{Sé ENGINEERING Western Transportation Institute




Avg Base Course Strain, 2nd
Construction
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HMA

Average Density and Percent Compaction
Nuclear Density

Test Section 1 Test Section 2 Test Section 3
Density (Ib/ft3) 137.8 139.4 140.8
p .
ercent Compaction 90.1 912 921
(%)
1.O0B+H8 ——————
% Sample 1
Sample 2
x Sample 3
, Fit -
- 1.00E+07 > ot - §
=
: K
'E 1.00E+06 &f
2 1.00E+05
1.00E+04

1.OOE-04 1.00E-02 1.00E+00 1.00E+02 1.00E+HM 1.00EH)6
Reduced Frequency (Hz)
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Ruttina Results
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Post-Trafficking Forensic Analysis

HMA Density
] Density (Ib/ft3)
Location ] ] .
Test Section1 TestSection2 Test Section 3 Average
Prisms Inside 142.8
Wheel Path 142.7 143.5 143 6 143.1
Prisms Qutside
Wheel Path 139.6 142.3 141.7 141.2
Cores Outside
Wheel Path 141.6 144.2 142.9 142.9
Average 141.3 143.3 142.8 142.4
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Post-Trafficking Forensic Analysis

Subgrade Moisture and DCP

Measurement Average Moisture Content (%)
Depth Control RS280i Geotex 801 o ! 2 5 RO, 5 6 7
Surface 25.0 25.3 24.4 i | | ‘ ‘ ‘ |
1 in. below 25.5 25.7 25.2 6 |
2 in. below 26.3 26.2 25.5

12

18

Depth (in.)

24

30

36
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Task 4: Analysis and Synthesis of

Results

« Evaluation of representative subgrade
strength
— Complicated by: elapsed time from placement,

set-up (thixotropy), moisture loss, base and
HMA reconstruction

— Original placement: w = 28 %, Vane = 100 kPa,
CBR estimate =2.5 %

— Measurements taken during 2" construction
and forensic work suggest best CBR estimate =
3.5 %
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Comparison of Results to Literature

« Saghebfar et al. (2016): RS280i, thicker
section, stronger subgrade (CBR=5),
TBR=1.38.
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Comparison of Results GMA WPII
Berg et al., 2000

Roadway Design Conditions Geosynthetic Type .
-  Firm subgrade, base > 300 mm,
Subgrade Base/Subbase Geotextile Geogrid GG-GT Composite .
Thickness reinforcement usually not
(mm) Noonwoven | Woven | Extruded Knitted Open- q“'ell a p pl Ica b | e. l
or graded Graded
woen | Base' | Bue | o | Ow strength subgrade, base >
Low 150 - 300 o ° ° a ° ® 300 mm, reinforcement usually
(CBR < 3) H
(M, <30 MPa) > 300 o o » ) ) ® appllcable. lb
Firm to 150 - 300 @ ] [ ] | [ ] &
Very Suft
(3= CBR= &) = 300 @ @ .‘.-‘ | O &
(30= M, = 80)
Firmer 150 - 300 D] D] » a a &
(CBR = 8}
(M, >80 MPa) =300 0 O o 2 .} &
Key: @ — usually applicable p — applicable for some (various) conditions
) — usually not apphcable d — insufhicient information at this ime & — see note

Motes: 1. Total base or subbase thickness with geosynthetic reinforcement. Remforcement may be placed at

bottom of base or subbase, or within base for thicker (usually = 300 mm) thicknesses.
Thicknesses less than 150 mm not recommended for construction over soft subgrade. Placement of
less than 150 mm over a geosynthetic not recommended.

2. For open-graded base or thin bases over wet, fine-grained subgrades, a separation geotextile
should be considered with geogrid reinforcement.

3. Potential assumes base placed directly on subgrade. A subbase also may provide filtration.

@ Reinforcement usually applicable, but typically addressed as a subgrade stabilization application.

(& Geotextile component of composite likely is not required for filtration with a well graded base
course; therefore, composite reinforcement usually not applicable.

{6 Separation and filtration application; reinforcement usually not applicable.

7. Usually applicable when placed up in the base course aggregate. Usually not applicable when este rn Transportation In Stitute

placed at the bottom of the base course aggregate.




Analysis of Rutting Results
Arguments for Sections Performing Similarly

|. Initial seating or shakedown
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Analysis of Rutting Results
Arguments for Sections Performing Similarly

ll. Average +/- one standard deviation of measurement points
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Longitudinal Rut (in.)
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Analysis of Rutting Results
Arguments for Sections Performing Similarly

lll. Reliability/Probability Theory

« Variability of constructed properties leads to a
possibility that underperformance of the two
geotextile sections is due to poorer properties.

« Greater variability of properties results in a greater
possibility (probability) for this explanation.

« Formally addressed by using the variability of
constructed properties to evaluate the probability
that the traffic carried by the two geotextile sections
equaled or exceeded that of the control.
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Probability Theory

* Duncan (2000). “Factors of Safety and Reliability in
Geotechnical Engineering”
« Steps
— ldentify properties of most importance

« HMA and base layer thickness
» Subgrade vane shear strength
» Subgrade in-field CBR strength
» Subgrade dynamic stiffness
» Subgrade DCP
» Base course dynamic stiffness
« Base course DCP
 HMA dynamic modulus

— Determine average values and standard deviation of each
property for each test section
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Probability Theory

« Steps (continued)

— Use subgrade properties to determine
average value and standard deviation of
subgrade resilient modulus

) Resilient Modulus (psi) Subgrade Average
Test Section
Average Standard Deviation CBR
1 5540 455 3.69
2 5233 350 3.4%
3 4985 271 3.32
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Probability Theory

« Steps (continued)

— Use base course properties to determine
average values and standard deviation of
base layer structural coefficient, a,

a
Test Section ?
Average Standard Deviation
1 0.140 0.013
0.135 0.008

3 0.140 0.00%
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« Steps (continued)

Probability Theory

— Determine average values and standard
deviation of HMA and base course layers

MONTANA

STATE UNIVERSITY

. Thickness (in)
Test Section
Average Standard Deviation
1 339 0.16
3.40 0.13
3 331 0.19
. Thickness (in)
Test Section L
Average Standard Deviation
1 13.44 0.14
13.18 0.19
3 1326 022
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Probability Theory

« Steps (continued)

— Use average property values along with AASHTO (1992)
pavement design equation to calculate (predict) ESAL'’s for
each test section (ESAL-P). ESAL-O gives ESAL's
observed in test sections at rut depth = 0.4 inch, selected

to match ESAP-P for control.

Parameter Test Section 1 Test Section 2 Test Section 3
Reliability 83% B3% B3%
Iy -0.46 -0.46 -0.46
Sa 045 045 045
APSI 1.7 1.7 1.7
Mg (pst) 5540 5233 4985
a 041 041 041
Dy (1n) 3.39 340 331
a; 0.140 0135 0.140
D; (in) 13 44 1318 13.26
SN 327 324 321
ESAL-P B.03E+HD3 6.64E+05 5.66E+05
ESAL-O 8.03E+03 4 T3E+05 4 34E+05
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Probability Theory

 Intermediate conclusion: Use of average
properties and AASHTO equation predicts
geotextile sections should have carried
less traffic, but not by the extent observed.
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Probability Theory

« Steps (continued)

— Vary each parameter by + and — one standard deviation
and calculate ESAL (ESAL,*, ESAL,)

— Determine ESAL standard deviation, coefficient of
variation, reliability and probability for each test section

Test Section Frsar COV¥ (%) P (%)
1 321E05 399 -
2 1.78E 05 296 12.5
3 1L.71E03 30.3 5.8

 Interpretation

— Variability of test section constructed properties leads to a
12.5 % chance that the traffic carried by test section 2
would equal or exceed that of the control. 8.8 % chance for
test section 3.

H DI College of
%%%II‘VERS% ENGINEERING Western Transportation Institute




Probability Theory

« Conclusion

— Low levels of probability imply that variation of constructed properties
does not account for the control section outperforming the geotextile
sections.

— Shows excellent consistency of constructed properties between the
sections.

— Eliminates this as an explanation.
— Erodes support for “data-scatter” explanation.
— Leaves “seating or shakedown” as the most likely explanation.
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Evaluation of Spreadsheet Model

Parameter Test Section 2 Test Section 3 Test Section 3

Dy (in) 340 331 331

a 041 041 0.41

Dy (1n) 1318 1326 1326

a 0.135 0.140 0.140

Subgrade CBR 35 33 33

Gagzs (KN/m) 775 26 440

Gur 0.897 0.827 0.827

Feduction factor for interface shear 0.690 0970 0.780
Reduction factor for Poisson’s Ratio checked unchecked checked
Reduction factor for shear modulus checked unchecked checked

Average Properties
Measured from wide-width tensile tests

Need to be unchecked to produce TER=1
Increased to this value when reduction factor boxes are checked

MONT AN A College of
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Spreadsheet Model

 Reasonable parameters used to show no
benefit when CBR = 3.3 to 3.5

« When CBR=2.5, TBR =1.35 and 1.19 for
test sections 2 and 3, respectively.
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Geotextile Costs and Benefits

* Table of typical costs

Suberade
District E:I:cavagtiom']?ill Base C";’”E HMA ($/ton) RSESI{H Mfﬂ 1
Siyd) (Siyd’) (S/yd’) (Siyd’)
1 650 25.00 73.05 3.00 150
2 7.00 25.00 76.05 3.00 1.50
3 7.50 30.00 79.05 3.00 1.50
4 7.50 37.00 81.05 3.00 1.50
5 7.00 30.00 81.05 3.00 1.50
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Geotextile Costs and Benefits

 Benefits:

— Modest amount of reinforcement when subgrade
CBR =25

— Geotextiles offer insurance against more rapid
pavement deterioration during seasonally weak
periods requiring fewer rehabilitation treatments

— Separation and filtration:
« Maintain integrity of base course layer.

« Reduce amount of rehabilitation needed at scheduled
periods.

* Provides confidence in rehabilitation decision making.

« Avoids worse case of having to replace base layer
during a scheduled rehabilitation
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Conclusion

* For section thickness examined and subgrade
CBR = 3.5, no structural benefit

* For subgrade CBR = 2.5, modest structural benefit
» Test section results support spreadsheet model
* Model results and GMA WPII are in agreement

* Model should be used to assess upcoming
projects where reinforcement might be beneficial

* Model improvements could include replacement of
check boxes with property values
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Implementation Plan
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